Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Bis[2,2'-ethylenedioxydibenzaldehyde bis(thiocarbohydrazide)] tris(pyridine) solvate ${ }^{1}$

Suchada Chantrapromma, ${ }^{\text {a* }}$ Ibrahim Abdul Razak, ${ }^{\text {b }}$ Hoong-Kun Fun, ${ }^{\text {b }}$ Chatchanok Karalai, ${ }^{\text {a }}$ Hao Zhang, ${ }^{\text {c }}$ Fu-Xin Xie, ${ }^{\text {c }}$ Yu-Peng Tian, ${ }^{\text {c }}$ Wen Ma, ${ }^{\text {c }}$ Yin-Han Zhang ${ }^{\text {d }}$ and Shi-Sheng Ni ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ${ }^{\text {b }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\text {c Department of Chemistry, Anhui }}$ University, Hefei, Anhui 230039, People's Republic of China, and dDepartment of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Correspondence e-mail: suchada@ratree.psu.ac.th

Received 7 November 2000
Accepted 20 November 2000
The title compound, a novel 30 -membered 2:2 macrocyclic thiocarbohydrazone, $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, has been prepared and crystallographically characterized. The molecule of the compound is twisted. One dioxabutane group is boat-like in shape, whereas the other is highly disordered. The crystal structure is stabilized by inter- and intramolecular hydrogen bonds.

Comment

Thiocarbohydrazide, $\mathrm{H}_{2} \mathrm{NHNC}(\mathrm{S}) \mathrm{NHNH}_{2}$, and its Schiff base derivatives are interesting ligand systems because of the availability of several different kinds of potential donor sites (Bustos et al., 1990; Bacchi et al., 1996; Souza et al., 1994). Recently, many open-chain ligands of thiocarbohydrazone have been rapidly developed and studied in detail. The aim of the present research is the design of a new macrocyclic ligand involving mixed N -, S - and O -donor atoms, and we describe here the synthesis and characterization of a novel 30membered 2:2 macrocyclic thiocarbohydrazone, (I), obtained by the condensation of thiocarbohydrazide with 1,4 -bis(2-formylphenyl)-1,4-dioxabutane.

As shown in Fig. 1, the molecule of (I) is twisted. The S1C 1 [1.666 (3) \AA] and $\mathrm{S} 2-\mathrm{C} 18$ [1.657 (3) \AA] distances indicate that they are double bonds (Bustos et al., 1990; Bacchi et al., 1996). This suggests the presence of a thioketo form in the solid state. The torsion angle along the $\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$ dioxabutane moiety is $64.8(4)^{\circ}$. This dioxabutane group is boat-like in shape, whereas the other is highly disordered (atoms O4, C26 and C27 are disordered).

[^0]Each unit of the macrocyclic ring, consisting of the thiocarbohydrazone and the axially substituted phenyl rings, adopts a planar conformation. The dihedral angles are $15.4(2)^{\circ}$ between rings $\mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{C} 28-\mathrm{C} 33$, and $12.6(2)^{\circ}$ between rings $\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 20-\mathrm{C} 25$. The twist is introduced by the dioxabutane bridges connecting the two units. The dihedral angle between the two thiocarbohydrazone groups is $30.98(8)^{\circ}$.

(I)

The three molecules of pyridine present as solvate in (I) help to stabilize the structure by forming intra- and intermolecular hydrogen bonds with the macrocyclic ring; details are given in Table 2. The $\mathrm{C}-\mathrm{H} \cdots C g(\pi$-ring $)$ interactions $[C g 1=\mathrm{C} 20-\mathrm{C} 25, C g 2=\mathrm{C} 28-\mathrm{C} 33, C g 3=\mathrm{N} 10$ and $\mathrm{C} 40-\mathrm{C} 44$ (one of the three pyridine molecules), and $\mathrm{Cg} 4=\mathrm{C} 11-\mathrm{C} 16]$, i.e. the interaction between a phenyl H atom and a centre of gravity of a pyridine ring, and between the H atoms of the pyridine rings and the centres of gravity of the phenyl rings, play a major role in the packing and molecular arrangement in the crystal (Table 2).

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms and the pyridine solvate molecules have been omitted for clarity.

Experimental

A solution of 1,4-bis(2-formylphenyl)-1,4-dioxabutane (10 mmol) in ethanol (150 ml) was dripped slowly into a refluxing solution of thiocarbohydrazide $(10 \mathrm{mmol})$ in aqueous ethanol $(100 \mathrm{ml})$, followed by the addition of concentrated hydrochloric acid $(0.25 \mathrm{ml})$. The reaction mixture was refluxed for 10 h with stirring and cooled to room temperature. The yellow precipitated powder of (I) was filtered and washed thoroughly with water and ethanol, and then air dried. A crystal suitable for X-ray diffraction was obtained by evaporation from a benzene-pyridine (1:1) solution.

Crystal data

$\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{O}_{4} \mathrm{~S}_{2} \cdot 3 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=918.10$
Monoclinic, $P 2_{1} / c$
$a=12.1752(2) \AA$
$b=22.2029(1) \AA$
$c=19.8479(4) \AA$
$\beta=117.168(1)^{\circ}$
$V=4773.42(13) \AA^{3}$
$Z=4$
$D_{x}=1.278 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5918 reflections
$\theta=2.77-33.11^{\circ}$
$\mu=0.168 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.37 \times 0.33 \times 0.28 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
ω scans
Absorption correction: empirical (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.941, T_{\max }=0.955$
30445 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.068$
$w R\left(F^{2}\right)=0.166$
$S=1.051$
10907 reflections
593 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{C} 1$	$1.666(3)$	$\mathrm{S} 2-\mathrm{C} 18$	$1.657(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 3$	$114.6(2)$	$\mathrm{N} 6-\mathrm{C} 18-\mathrm{N} 7$	$113.2(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$	$119.5(2)$	$\mathrm{N} 6-\mathrm{C} 18-\mathrm{S} 2$	$126.3(2)$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{S} 1$	$125.9(2)$	$\mathrm{N} 7-\mathrm{C} 18-\mathrm{S} 2$	$120.5(2)$
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 2$	$64.8(4)$		

After checking their presence in the difference map, all H atoms were fixed geometrically and allowed to ride on the atoms to which they were attached, with $U_{\text {iso }}=1.2 U_{\text {eq }}$ of the parent atoms, and with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$. The ratio of the major to the minor component of the disordered dioxabutane group is 0.56:0.44. The bond lengths of the disordered group were restrained to be the same as those of the non-disordered dioxabutane group.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 1$ is the centroid of the C20-C25 ring, Cg2 is the centroid of the C28-C33 ring, $C g 3$ is the centroid of the N10/C40-C44 ring (pyridine solvate) and $C g 4$ is the centroid of the C11-C16 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.86	2.135	$2.990(4)$	173
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{~N} 10$	0.86	2.321	$3.061(4)$	144
$\mathrm{~N} 7-\mathrm{H} 7 A \cdots \mathrm{~N} 11$	0.86	2.173	$3.008(4)$	164
$\mathrm{C} 40-\mathrm{H} 40 A \cdots C g 1$	0.93	2.757	$3.453(5)$	132
$\mathrm{C} 45-\mathrm{H} 45 A \cdots \mathrm{Cg} 2$	0.93	2.868	$3.673(5)$	146
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{Cg} 3^{\mathrm{ii}}$	0.93	2.752	$3.522(4)$	141
$\mathrm{C} 36-\mathrm{H} 36 A \cdots \mathrm{Cg} 2^{\text {iii }}$	0.93	2.942	$3.746(5)$	146
$\mathrm{C} 46-\mathrm{H} 46 A \cdots \mathrm{Cg} 4^{\text {iv }}$	0.93	2.941	$3.769(5)$	149

Symmetry codes: (i) $x-1, y, z$; (ii) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$.
structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

This work was supported by the National Natural Science Foundation, the Climbing Project from the National Science and Technique Commission of China, and the Natural Science Foundation of Anhui Province. SC, CK and HKF thank the Prince of Songkla University for a collaborative research grant. The authors would like to thank the Malaysian Government and the Universiti Sains Malaysia for research grant R \& D No. 305/PFIZIK/610942.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1435). Services for accessing these data are described at the back of the journal.

References

Bacchi, A., Bonini, A., Carcelli, M. \& Farraro, F. (1996). J. Chem. Soc. Dalton Trans. pp. 2699-2705.
Bustos, G. R., Burdkhardt, O., Schrebler, R. \& Carrilo, D. (1990). Inorg. Chem. 29, 3996-4002.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Souza, P., Matessanz, M. A., Arqero, A. \& Fernandez, V. (1994). Z. Naturforsch. Teil B, 9, 665-678.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

[^0]: ${ }^{1}$ Systematic name: 2,5,25,28-tetraoxa-13,14,16,17,36,37,39,40-octaazapentacyclo[40.4.0.0 $0^{6,11} .0^{19,24} .0^{29,34}$]hexatetraconta-6,8,10,12,17,19,21,23,29,31,33,35,-40,42,44,46-hexadecaene-15,38-dithione tris(pyridine) solvate.

